QB: 15.6 and 7
(1) SET UP BUT DO NOT EVALUATE: integrals as specified to find the volume of the solid bounded by the cylinder $z=x^{2}$ and the planes $\mathrm{y}=0$, and $\mathrm{z}=4-\mathrm{y}$.
a) sketch the solid and sketch the projections in each of the coordinate planes
(Note: This is very similar to the example done on video)
(12 POINTS)

b) Triple integral- rectangular coordinates; order dz dy dx

c) Triple integral- rectangular coordinates; order dx dy dz

$$
\int_{0}^{4} \int_{0}^{4=z} \int_{-\sqrt{z}}^{\sqrt{z}} d x d y d z
$$

(d) Triple integral- rectangular coordinates; order dy dz dx

$r \quad d V=r d z r d r d \theta$ $=r^{2} d z d r d \theta$
(2) Evaluate the integral $\int_{-3}^{3} \int_{0}^{\sqrt{-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x$ by switching to cylindrical coordinates
(8 points) y
right half. parkoloid

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{3} \int_{0}^{9} r^{2} d z d r d \theta \\
& \left.\int_{0}^{\pi} \int_{0}^{3} r^{2} z\right]_{0}^{9-r^{2}} d r d \theta \\
= & \int_{0}^{\pi} \int_{0}^{3} r^{2}\left(9-r^{2}\right) d r d \theta=\int_{0}^{\pi} \int_{0}^{3}\left(9 r^{2}-r^{4}\right) d r d \theta \\
= & \left.\int_{0}^{\pi} 3 r^{3}-\frac{1}{5} r^{5}\right]_{0}^{3} d \theta=\int_{0}^{\pi} 3^{4}-\frac{3^{5}}{5} d \theta=\int_{0}^{\pi} \frac{162}{5} d \theta=\frac{162 \pi}{5}
\end{aligned}
$$

